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1.     INTRODUCTION 

This report will serve to tumtnarize the analyeit, and the concluaione 

drawn therefrom, in compliance with the requirements of contract IDA-30- 

069-AMC-17(A).   A summary of these conclusions will be found in section 2 

of this report» and the full analysis Is reported in sections 3 to 6.   The sub- 

jects of this analysis are somewhat varied in view of the nature of the "Scope" 

of the contract, which calls for analysis in problem areas of more or less in- 

dependent content.   The general areas covered are related to the effects of 

the dynamic projectile environment upon specific fuse components: 

(a) Spiral Motor Springs 

(b) Pivot and Journal Friction 

(c) Torsion Hair Springs 

(d) Beam Hair Springs 

Thus, the performance characteristics and various specific aspects of the 

behavior of these components in a spin or setback environment will be the 

subject of the following discussion. 

The initial analysis undertaken pursuant to contract #DA-30-069-AMC- 

17(A) was concerned with the analysis of spiral motor springs.   This analysis 

had, as its objective, the determination of the effects of projectile spin upon 

the torque yield of the motor spring. 

It was determined that in order to obtain physically meaningful results, 

the non-spinning or "static" spring must be fully understood.   At the time, 

the body of literature which dealt with spiral springs considered only those 

springs unconstrained by an outer barrel.   A great deal of empirical evidence 
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was available which supported the view that the existing analytical approaches 

were inapplicable to "real" springs. 

Thus the "static" analysis was undertaken to determine the character of 

the relationship between arbor torque and the physical parametexs of the spring. 

This was determined, yielding the equation governing the "torque-turn" char- 

acteristic within the region of interest.   This equation, in addition to being of 

great utility and interest, forms the basis for comparison in evaluating the 

spin effects. 

The next step in the analysis was facilitated by dividing the spin effect 

into its simplest constituents, i.e. , axisymmetric extensional deformation 

and axisymmetric bending deformation.   The effect of these modes of defor- 

mation upon the torque output at the arbor is described in detail in section 3 

of this report, along with the "static" torque-turn characteristic.   In this 

same section the possibility of the incidence of greatly eccentric deformations 

was introduced. 

The question of eccentric deformation received preliminary analytical 

and experimental study; as reported in section 3.   This mode of deformation 

was not foreseen at the outset of the investigation, nor was the possible extent 

of its effects.   These effects are indicated, on an order of magnitude basis. 

Investigations of pivot friction under the influence of high centrifugal load- 

ing due to projectile spin are indicated in section 4, following the discussion of 

motor spring eccentricity.   Calculations are performed for the fully elastic 

condition of the pivot and pivot seat.   It is noteJ that under ordinary conditions, 

plastic action and accelerated wear may easily become Important considerations. 
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to be extensive over the length of the eprlng•   Thus* thlt should be reconfid* 

erod i( It it to be m method of fabrication. 

The final eection indicates the unique relationship that exists between all 

the torsion hair spring parameters•   The same parameters determine critical 

speed and natural frequency, thus knowledge of one may be used to indicate the 

other, without the necessity of direct appeal to all implied parameters. 
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i.   SPIRAL MOTOR SPRINGS 

3.1.   INTRODUCTION 

Thii report will iummarUe Technik1! analysis, to date, with respect 

to the behavior and deformation of spiral motor springs in a spin environ- 

ment.   The axis of spin is taken perpendiculatr to the plane of the spring, 

as is conventional in mechanical time fuse practice; with the arbor axis co- 

linear with the projectile spin axis.   This analysis Is provided for under con- 

tract #DA.30-069-AMC-17(A). 
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In order to Cully understand motor spring characteristics in a spin 

environment, it is first necessary to understand these same character« 

istics in the non-spinning condition.   It appears that even non-dynamic 

spiral spring theory has not previously been brought into agreement with 

the type of empirical data which is observed by spring makers and users* 

Thus the program has been divided into phases of investigation dealing 

separately with (1) non-spinning and (2) spinning environments.   It was 

found that the "spin analysis" could advantageously be further sub-divided 

into so-called "membrane" and "bending" solutions representing extension- 

al spring deformation and bending deformation in the plane of the spring, 

respectively. 

The bending solution, which will be found to present the greatest phe- 

nomenalogical complexity, may be examined from the viewpoint of a super- 

position of eccentric effects upon an (almost) axially symmetric solution. 

The coupling of these two separate effects, which in combination with the 

other analytical results of this program represents the complete solution 

to the spinning motor spring problem.   This report emphasises the various 

aspects of the symmetrical mode of deformation of the motor spring; limit- 

ing discussion of the eccentric effect to its preliminary aspects.   The impor- 

tance of this latter mode of deformation was only recently determined during 

the course of experimentation.   Later work will explore it more fully. 
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the maximum number of turne (i.e., when the spring is wound "solid")« 

at which point the slope of the characteristic changes radically 

(  ^   -*very large). 

The element of area on the preceding curve, which is   T'c/cP » represents 

the elemental energy,   a A . Thus the single cross-hatched areas shown be« 

tween the perturbed characteristic shape and the non-perturbed wind-up or 

run-down characteristics is a measure of energy loss due to friction Imposed 

by local effects (interference between eccentric portions of spring).   Likewise 

the energy loss between wind-up and run down is represented by the overall 

area between the two curves, whereas the available energy is that (double 

cross-hatched) enclosed by the run-down curve. 

In the following treatment, the effects of friction are not considered. 

Those effects, which are of great importance in their own right, are not 

first-order considerations in the present problem of the spinning motor spring. 

Further, this section will be linnited to theoretical derivations of the necessary 

equations. 
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3.2.2   DETERMINATION OF TORQUE-TURN CHARACTERISTICS IN 

LINEAR RANGE 

Man/ references may be found which deal with the spiral spring in the 

condition where adjacent coils are not in contact, (e.g., Chapter 27 of Wahl'o 

"Mechanical Springs")   The relationships to be found in these references 

take the form: 

r- T tf 
where       / s   torque delivered to arbor by spiral spring 

£1 - bending stiffness of spring section 

/   '  spring length 

CP ^   number of deflected turns undergone by spring 

/C  * constant depending on prescribed boundary condition at 
outer boundary: fixed end ^ 1 ^    /C ^ 1,25<SP pinned end 

The problem which arises in the applicatiou of this relationship is gen- 

erated by the incompatabillty« in practice, of the definition of   CO with the 
i 

requirement for non-contact,   i.e., when    O £   cf ■£ & sorpe coils are in 

contact.   Thus, in the normal course of events the Important position of 

z<>ro torque occurs precisely in that range of values of    CP   where the clasi- 

cal solution does not apply. 
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Thus, in the barrel, the spring delivers zero torque at some non-sero 

number of turns; which ii beyond the validity of the classical solutions. 

Tk 

'* barrel *      J 

spr\*(\   ******Jtyf 

fwr 

Sfrm*y 
V^ 

-»f 

f'f MO* (ßsC 

In recognition of the ambiguity of the location of the point     Cfi : O t 

due to the barrel constraint and the resulting non-linearity of the solution 

for   CP £ LPk t the linear solution may be used only to find the slope (   J<ö   ) 

for values of   *-§ *" ^ •     Further, it is sufficient to arrive at the proper 

solution in this linear range, at this time, since the spring is always used 

in the range    0?> W range for time fuze applications.) 

Given the slope, within the range of interest (i.e^     ■~--   r  /^ —r- 

one may integrate to find: 

r- ftf + c 
which differs from the conventional expression only by the constant,   C    . 

Any boundary condition can determine the value of   C   , but since the zero 

boundary condition is submerged in the non-linear range of the solution, the 
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3.2.3   DETERMINATION OF MAXIMUM TORQUE ( 7"^^) 

3.2.3.1.   ToUl Spring Torque 

A free bod/ diagram of the spring and of the arbor will illustrate 

the relation between the moment» ''4L»» and the torque,   /••.* •   Assuming 

a simply supported end at the barrel: 

/ 

P  s-H 

.ifiiSSL. 

■L otbor 
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Equilibrium equation! result in 

or combining through the elimination of    P , there retulte 

For the case where the end at the barrel it pinned     /', * &    and 

Further it can be shown for the elastic case with a fixed end at the barrel 

that   p*6    and 

71V - /^f 
In general We can write 

where for the elastic case 

k: - 
■ ~% 

Further* since the spring unloads and reloads elastlcally, even when it has 

rccei   "d a prior plastic deformation to achieve its form from the flat stock, 

this value of /\ will hold in general.   Cases other than pinned or fixed end 

can be considered separately but we can assume they will be within the range 

indicated above. 
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where o s   spring width 

h ~   spring thickness 

h -   elastic core thickness 

The core thickness, H , may be found In terms of the radius of 

curvature of the spring considering the < lastlc deformation of the core, i.e., 

^- vf 
Substituting this relationship Into the expression Cor the plastic moment* 

and noting that   /^ /y/«»^» "    /*»«. • t*16 maximum spring torque Is found 

to be: 

It may be hoted that this expression can be written: 

where      //<,<#/</    ~       CT"  (   ^    )     , see case II, previous page. 

So that the condition       /*•**,* ~  rC f^l^'nU when       P* J^;*     Implies 

\    £/i} '     "  ' / For initiation of 

£"     I f plastic flow 

ei*(. 7 

or: 

Thus:   for    f * J>^ ,       f^,   *   £, i  fj  l&)%- J f^j^ 

£or / * /-'•' •    T^,'' K i><rz £ 
-    J rf or / p'/^;-   ,    T~*r *    * f 

3. 13 















w 

that each coil may be approxin  .tod bs a circular arc (l*e«i    g* «* 44r 

for     $*  4. 4ft ), the following idualis^lon will be utlllscdt 

The element of spring length, for the   /     coil, now appoart at: 

***** 

N; c=±b M 

Thus, for equilibrium: 
/]/?■* cJtr t y «- 

and the radial growth (   ^ ) is given by 

where the membrane force,   fSJ , is constant for any one coll (i.e. , for 

each circular arc). 

The theorem on total potential energy of a body (which may be found 

on page 173 of Love's "Mathematical Theory of Elasticity") states that 

^ '0 

3.^0 
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where the total potential« 22 ft^  * is equal to the ■am of the internal (strain) 

energy,   1/    , of the deformed body, minus one-half the external work done 

on the body, ^ W   (in this case, by the centrifugal forces) in deforming 

from its unloaded state to its loaded state of equilibrium.   Since only "mem- 

brane'* effects are now being considered the subscript   y   will be used. Thus: 

where n      A,t 

u. ■ I, m J' 
N - stress resultant of membrane stresses 

AP T spring stiffness In stretching 

/ * length of spring " 

St Is * arc length and angle respectively, measured 
around the spring 

r s  radius to generic point on spring 

M e mass per unit length of spring 

CO t spin rate of spring 

LA * change in   r  under centrifugal force  (inoS'r * r öV*) 

Integrating vJ^  for each coil, one finds for the   /     coil: 

W'A/. - ztrm OJZ r* LA. 2   ^t 
1/VA/. - zum c*s 

Thus: 

where the coils are denoted by enumerators,   /  ,     i 4 i  4 r* • 

Likewise, one finds: 

IT     *- 
U«- re % o/ylr) 
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Subitltutlon In   ty-iWi/   s  O    » yieWt: 

r*t^ )t.   so 

5? r/t/v), L «^^r^2" 
2 c^w^- 

Substituting the  /£* coil displacement relation; 

the general expression for all coils may be written: 

i: c^r). 
«•' 

^ ^rv;,. 
-    **t   tc? 

The above expression holds in general and, as can be shown, for the    / 

and j -   colls; 

/vT*      /v^l 

- <ti 

or 

r.5 M 

A/ 
r 

r J/V; 

a     e    C***£~*t  S  I* CO 
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This Is the result that is obtained by an equilibrium analyflt of a 

hoop (or a thin cylindrical shell) of radius   f    and body force equal to the 

value    irteJ'r ,   The mechanism involved in the stretching of the spring Is 

akin to that Involved In the stretching of the hoop; an orde^of-magnltude 

estimate of the value of //s A/t    (i.e., the uncoupled membrane force, alone) 

at the juncture of spring and arbor can be arrived at by 

where: /lj  =   spring membrane force at arbor 

f  -   arbor radius 

The additional torque due to a spring membrane force of this magni- 

tude at the arbor is simply 

For constant   CO , the value of     'Tv'   !• approximately constant throughout 

the unwinding cycle, except when the unwinding angle,   cP , Is close to the 

limits, zero and    tf^aA •   At these points, and close to them, various param- 

eters are affected by the fact that colls are effectively taken out of operation 

by being pressed against either the arbor or the barrel. 

The membrane effect on the value of   TV    found for the particular 

case of the spring configuration being investigated 

k :. 0/ 
* 
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is approximately 4; i*-o* % which If about 1.2% of the maximum ttatic torque 

of 20.5 ln«oz. A percentage deviation o£ thlf magnitude may not be cooaid* 

ered Important. It It to be emphasised» 

however, that this represents only one portion of the total dynamic effect, 

so it will not be investigated in further detail until all the effects are ex- 

amined; and is subject to further experimental verification. 

3.3.1.2  Bending Deformations 

3.3.1.2.1   Axi-Symmetric Deformations 

Axi-symmetrical" bending deformations represent a redistribu- 

tion of colls within the radial confines of the barrel and arbor, as the spring 

is spun up.   In addition to these boundary constraints, spring bending de- 

formations must satisfy constant spring length and invarlent total number 

of coils (since the spring is taken in a position of quasi-steady wind position) 

conditions.   These reflect the conditions which must be Imposed on the de- 

formation since membrane extension was found to be small. 

All deformations which represent geometrically possible coll 

distributions can be classified in the following manner: 

Class (1):   Uniform distribution which will be assumed to correspond to the 

initial undeformed state of the spring. 

(Let   ft, ,  ^u •  and  flj   represent arbitrary numbers such that 

Hl   -t   M1,    +   M i       s    tsi     a. total number of coils of spring, 

n. ?# ) 
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Then clasf (2) and (3) deformation« may be defined ait 

Class (2): fl,    outer coils move outward (toward barrel) 

/^t   inner coils move inward (toward arbor) 

tf.    coils remain stationary ( in class (1) distribution) 

Class (3): /ll   outer coils move inward (toward median radius) 

^t   inner coils move outward (toward median radius) 

^j   eoils remain stationary (in class (1) distribution) 

For further consideration each coil will be taken to have a con- 

stant radius ( r|    ) with an intercoil spacing {  4ri   ); which greatly simpli* 

fics the ensuing analysis while retaining the important basic physical param- 

eters.   Thus the above figures are idealized as 

I 
E 
0 
D 
0 

Cf. s radial deflection of "t^ coil, (positive sign taken outward) 

3. 25 
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Example} 

Let ut find the deformation of a •imple «xtenelon spring (oprlng con- 

stant * A  )» ander the Influence of a force   /^ , with preload   /,   • 

sssss/s/y,   /y/Jjy/y//j   dUudäf 

pmlcM       r*f9 

Let us consider     \    the equilibrated deformation which, in this case, 

satisfies the equation 

The theorem of minimum potential can be applied to either the original or 

the preloaded system to provide the same result; except that in the former 

the preloaded equilibrium equation must be known and utilized. 

(1)  Total System       ( S>0) 

hence Tf " $ k    C S *i, )% ~ fr* * f.  C5 * S.)] 

It is now necessary to minimize fj with respect to all possible variations 

in    d    »   This could be done by setting    -£   -r^ .   However, since this 
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technique may not be applicable in this report, we will considar the most 

general illustrative technique of actually presenting the result graphically. 

For this purpose we plot   ft   a. 0    -hf   Sto, 

77+ 

We see that the minimum // occurs at 

which represents the desired solution. 

(2)   Relative System    fj>*) 

In this case we consider only the perturbation from the equilibrium 

system so that it is not necessary to utilize the preload equilibrium equa- 

tions (no matter what their complexity).   Thus 
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hence 

or 

which plots similarly as 

Mf/M/Mf K*H 

•Wsr 

and yields a minimum where      0 '    4       • ^^Ich i* the desired solution* 

For the purposes of the work of this report we will always con- 

sider the spin perturbations from the non-spin equilibrium position; which 

greatly improves and simplifies the minimization procedure* 

3.3.1.2.2   Elimination of Class (3) Deformation 

In   order for the assumed deformation pattern from class (i) 

to any other class, to be possible, the function // must decrease* 

Thus; 

/T" * < O is required 

Since 

'(*) 

rr(l) = o i s the reference position* 
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However. /T  *   CS„rK.**) 

thus, the postibility requirement becomes 

buti     [/(*) >0    for all deformations 

therefore it Is necessary (but not sufficient) that 

in order to satisfy the requirement. 

The work for the    /       coil, in moving from the non-spin position 

to the perturbed position, is given by 

and the total work of all the colls due to the perturbation is, 

where 

fi * average   /' - coil radius 

4/« change in  /^ coil radius. 

Now considering the class (3) deformation 

and using the absolute magnitudes of deformations« we can rewrite the work 

a8 - Mt 

*     /t/ 4" 

3.30 
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Considering the upper bound 

However, considering the total coil length 

Lf -- zvSen**) ^/w^) 

But from the requirement for constant length 

or 

which requires 

or 

thus 
t * 

W* 2tr**jlZ/u''[r.:, -cJ 
/.-/ 

3.31 





st 

[ 
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c 

■ ■■■           i    irrilBKlli   'n ^.iiinum't. in'rj'teiliiii •mmtUjatUtUmmfm» 

[.■it,? 

It it required that JT be « minlmam* wtthln UM bouade of the 

coastrftiate of the problem«   This requirement mfty bo fovmulftted ftit 

(** i) Ci**) 

which together with the constant length condition» ae written below, defines 

a linear eet of equations: 

From the above form of the constant length condition, one finds that for 

I any    /  f*^    .* 
hi* - -/ 

and from the energy expressions: 

£L * tire I fS ' 

Thus, the equations may be expressed: 

where,        is  _    c*? t** f* 
&   '      £1 

/s*        r. 

3.33 
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r,   ■ v  ■  ^   m ■ 

and the additional  «'" coil dtsplacament during the | ^ iteration (not tha 

total  /'^ coil diiplacemant) it CtSJ     •   Thuithe j^ iteration trork dona 

in coil displacement it 

rj) 

Expressing the differential mate in terms of a differential coil length (of the 

form   r^<9), for the J "   and preceding iteration: 

Thus the expression for work becomes 

w 1 * IVIMZS l**;1 Cfi)1   -cu1    (fd)       J Cu.) 

or 

iu *      * 

where 

In order to minimise the potential, // , for the  /^   iteration, 

analogous to the non«iterative procedure (which corresponds to „ae J - I 

iteration), the strain energy» U     » expression is likewise required.    U 

represents the incremental strain energy associated with the change from 

the cy-'>   to the   C^    position of all coils, i.e.. 

\> 

t* 

S.S$ 

■.•■■. . £ftÄ.; .■ 



Likewise, the constant length condition mutt be employed for each 

iteration.   For the j" iteration« it it required that 

where it is to be noted that C^J represents the additional displacement 

which occurs during the   T"  iteration. 

Thus the governing equations have been found to be expresstblis in 

the following form 

2s C«;)        ~0 ^       CrisSoMt L*n*+i     £**J,'/iCyi 

Note that for the case /'/ ( the above equations reduce to those pre- 

sented for the non«iterative case, since o. * !• 

It is required that //    be a minimum, within the bounds of the con«* 

straints of the problem.   This requirement may be formulated as: 

i       m* - o - ^ + ml" i^ 
IW"' '       '    X«;)'1'        Xu.)'*'     XU;)''' 

n 
p 

D 

.   ■ 



Ntiriigii-ii    i   '  '       '''~-'■ ' ■]!, ,'1    ij r'lii^ if iim^ »(riirniiii ■ nr-r 
■■'* :; 

which, together with the constant length condition» «• written below, dofiats 

a linear set of equations; 
* 

From the above form of the constant length condition« one finds that for any 

and from the energy expressions: 

if 

Thue the equations may be expressed: 

K* - irf'."''<s*'p 
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Solving (or ^j     (itt) and (or ^e^ ) '      one (indtt 

., 3 

"   ..'    K     [        "ft;'"' 
Again it is found that (or the case j >/ , the above expressions re« 

duce to those of the non-iterative case» i.e», 

for      yi J.      : j 

*** 6 "'I s * 
thus J4 il) '-       r£t,%   •   / 

Therefore 

which, as was expected, are the non-iterative expressions,   t4. and £/, % 

respectively. 

Note that, in general, the summation is over the   H •! coils which 

are not touching. The number of coils which are touching is variable over 

the iterations, i.e.,    Mf (j
s ' ) jt fljCj) • Thus a symbol of the form  /I 

would be JustUied (or use as the summation limit, bat wonld add additional 

complexity to the notation without being necessary. 

3.38 
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The Iterative expreitions for the dieplacementt,   U , are not almplo 

functions of  AS    or of a/tff since 3   and ^t contain   6*^ r      .   Therefore, 

to solve,a true Iterative procedure must be utilised, so that   «^       It always 

known from the preceding Iteration«   Then selecting the new cütCuW, the 

constants may be calculated and the displacements obtained. 

This Is shown schematically below for two colls s, the <* and X ^ 

with radial position,  r , plotted against spin rate aJ  ,   Note that the 

displacement, which Is added to those preceding It, Is associated with the   / ^ 

Iteration.   The j "  Iteration, In turn, extends the range of the solution from 
^yfH) *jl ti)       ti->)      t'f*) 

the preceding limit  CJ to   ^       by starting from the baae    r ' « ^ ' *U    , 

co <H> 

t/ ptiMt x*<*l 

J^^^^^^^^ 

t** 

1^ 

c^ .//' a^   r,^ 
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In the same manner, the following iteration will extend the solution 
tjf) ,i> _ f/*** . tf)      J tp 

to CO   from OJ   by starting from the base      fy *     f-      * M.    and 

q'tO 
calculating    U.    .   The only limitation upon this procedure is that each 

iterative step be sufficiently small so that the ratio 

In certain special cases where     (/.     4< f '   we find that 

sr-i'-c^-n 
Therefore V - / 

Thus he iterative'procedure may be pursued for any number of 

cycles, 1 , without limiting the break-off point to that at which the ef- 

fective outer coil is removed from the.system. The range of each cycle 

can be made as small as one pleases, thus yielding a mechanism for in- 

suring the condition (At ^^ for each cycle of calculation. This special 

case was utilized in the special example computed in section 2.1.2.3. 1; 

but its validity -vould have to be verified in each application, so that it is 

better to use the more general relationship tot JH. . 
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The profile of coll deformation under these conditions It eh.. > v 

on the following page, at a function of K ,   Note that a form of Iterative 

procedure must be ueed here since at   A «- 20(lnchet)     , coll #10 contacts 

the outer constraint.   For this reason, a second cycle of numerical calcu- 

lations Is Initiated at this level of   /C with a nine coll spring and Initial 

radii  ft),   which correspond to the final deformed radii of the first cycle 

calculation   (r- * U,/       ).   . 

This process Is continued on the curve, with succeeding colls 

being effectively removed from the system by conforming to the shape of 

1.44 
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J,J.2.3  Oenerallgatlen of "Axi-Symmetric Btndlng AnaAyiii 

i 

In the energy anulysli of the Axl-iyrmmetrlc bending deformation, 

it wai implicitly naeumed that the deformed shape of the colls remained 

circular, as in the initial idesliaatlon.   Furthermore the initial idealisation 

wai aitumed axi-symmetric.   This analysis can be generalized as follows: 

(a) Allow r to be a continuous function of is rather than discrete 

values   f   , thereby changing the sum on    i     to an integral on   J ^ \ 

(b) Occreasethf range of each   *# .  -hereby changing the sum on   /' 

to an integral on   dl\  (or on    dcO    ) ' 

(c) Allow the initial idealization to be eccentric and allow the de- 

formed shape to be eccentric and non-circular. 

1- or the present, the implications of (c) will be considered in a pre- 

liminary manner, since this direction of analysis shows the greatest promise 

for thr investigation of eccentric deformation.    Initially the center of the un- 

di-formcd (circular) coils should be displaced from the center of the arbor 

(which is the center of spin). 

huff el 
coi/s 
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The deformed spring coili must be allowed to displace as well as deform 

(still within the confines of the arbor-barrel constraints). 

For this purpose the initial radius can be expressed 

• * 

which assures that the initial eccentricity is equal to   /c (see section 3.2.3). 

Then rather than a constant deformation   ^   ; around the circumference, a 

rigid body rotation plus a constant deformation plus an elongation of the cir- 

cle is allowed. _____ 

us   Co*Ste*Ht ? pi*. 

C/OH 1*1//et 

This deformation is expressable in harmonics of a Fourier expansion: 

/  -} ' — r— 
r<*</f<*f ri'Hia   boJii 
^rfw/h ciisplace*e*n 

*(y circle 
-/ 

The potential function   / /    must be minimized with respect to the 

parameters Xt    Pt   and   C;    now, rather than merely   &■ • i.e., in 
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functional notation: 

ITT, 
DR   ' 

I 
I 
I 
I 
I 
I 
I 
I 

The constant length condition, analogous to Its previous form, Is 

only concerned with radial growth,   A; . The parameters  Dt    and   tii 

which indicate coll position and coll shape, do not Influence the spring length. 

Thus the constant length condition appears as: 

-/ 

ns are sup- which supplies the   ^ ~ equation in    K   , where    H-\ equatio 

plied by      -zry -   O    (as in the case of     cJt      section 3.1.2.3).    The equa- 

tions    j^r - P   and   r^".    - O  , hold for all values of   c   Including     t * W • 

thus yielding a set of   J3 ^   equations for     /\ <' > Pi    and   £-i  • 

3.3.2.4   Effect of Eccentric Deformation on Torque 

The important thing about the inner coil with regard to spring torque 

position is its radius of curvature at its point of attachment with the arbor. In 

the case of eccentric deformation, the possibility of periodic fluctuations of 

the spring output torque becomes evident since the radius of curvature of the 

spring at its arbor interface, is determined by the direction of the spring ec- 

centricity.   It appears at this time, that the direction of the eccentricity does 

not bear a constant relationship to the orientation of the arbor-spring connec- 

tion; but instead varies as the spring unwinds. 

3.56 

1 



'S 

l 
l 
I 
j 

1 

I 
I 

In preceding lections, It was found that the direction of the initial 

spiral eccentricity (and, baaed on this, of the final eccentricity) is approxi- 

mately 90° from the outer end connection; for the special case of a spring in 

the shape of a spiral of Archimedes, having an integral number of colls.   It 

would be of interest to inquire into the position of the initial eccentricity for 

the case of an arbitrary (not necessarily integral) number of colls, as well 

as the non-Archimedian spiral configurations.   This would be an impor^ nt 

part of the investigation along with the extension and modification of the pres- 

ent axl-symmetric solution. 
! 
i 

As was pointed out in section 3.2.3, the spiral's Initial eccentri- 

. city can be accounted for by including additional terms in the expansion of the 

axi-symmetric spring deformation expression.   These terms, in addition to 

allowing for initial (non-spinning) coil eccentricity, will provide for eccentric 

coil deformation,   i.e. , in the axi-symmetric case, only radial coil growth 

was considered, whereas in this case coil elongation and rigid body coil mo- 

tion are possible. 

I In order to obtain an estimate of the possible result of eccentric 

coil deformation, an illustrative example will be presented. 

f 
Asgume that an arbor and the first coil of a spiral spring may be 

— 

idealized as shown below, 

■•- 

I i 
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Then, letting the above schematic represent the axi-symmetrlc case for a 

particular configuration, the Illustrative problem will consist of the deter- 

mination of the effect of non-circularity of the first coll, which would re- 

sult from non-axi-symmetrlc deformation. 

To this end a simple assumed deformed shape will be considered in 

order to avoid obscuring the meaning of the results of this illustrative ex- 

ample with premature complexity,  (The results  of this example will thus 

represent an order-of-magnltude indication of the possible extent to which 

eccentricities can affect spring torque output.)   The assumed shape will be 

that of an ellipse, 

(a) the circumferential length is taken equal to that of the first circular 

coil;   so that only deformations without extensions are being considered. 

(b) the minor axis is the same length as the diameter of the arbor. 

e/Z/fric*//*  c/e/erftej J^irs/ coif 

\ / 

->X 

*»«'^<pr- 

I 

Thus, to be explicit, the symbols in the above figure represent: 

T-  first coil radius when circular    (axi-symmetric) 

& *■ arbor radius » semi-minor axis of elliptical first coll shap (with 
coll length unchanged) 

h * semi-major axis of elliptical first coil shape 

3.58 



The length of the semi-major axis, b  , under these two conditions 

( (a) and (b) ), can be shown to be approximated by the following expres- 

sion in terms of axi-symmetric configuration. I.e., arbor radius, a, and 

circular first coild radius, r : 

The equation of the ellipse shown on the preceding sketch is 

a- i,'- 
Thus the radius of curvature at any point may be found to be given by 

CO 

c-z; 

At the points of maximum and minimum curvature this becomes: 

(o.h)     -      ^ 
/ 

and - ^ 
C3; 

Using the same numerical values as were used in the previously mentioned 

report (TR #64-11), take 

a --   tll., 

rs  .12" 

! £1*   .375 # in2 

which corresponds to the spring in the example examined in that report, 
T 

1 rotating at 34,S00   rpm# 

Thus, from (l) and (3), one finds: 
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Cc.o)'-™* 

Then the change in moment at these same points, from that of the coil in 

its circular (i.e., non-eccentric)   position, is given by   : 

_ £&!       ^   J~   -   _1—     -   /. 3 7 

This means that the first coil, if it remained circular, would impose 

a constant torque producing moment, M , upon the arbor.    However, that 

same coil, if it had an elliptical shape imposed upon it by the eccentricity 

of its deformation, could impose moments which vary from the value A/ by 

the preceding ^M  values.    Thus with   £1IS ,315, as stated previously, the 

imposed torque could vary from 

depending on the relative arbor-first coil orientation (where A» , at this 

spin rate, for the example is approximately 11,4 in-oz). 

Then assuming that the position of the arbor relative to the first coil 

varies continuously around the circumference during a single turn of the 

arbor in the unwinding cycle, the resultant torque characteristic appears 

as shown on the following curve. 
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3.4.     SUMMARY OF RESULTS 

(a)  For the non-spinning spring in a barrel: 

£1 r-T~*< - ft (f—'-y ) 

where / - spring torque at any value   ^f 

Cf ?  angle through which spring has been turned 

Op - angle turned to reach "solid spring" state 

£/:   spring section stiffness 

/ -   spring length 

C   /   7 fixed end at barrel 

If-*' J pinned end at barrel 

k k -  width and thickness of spring section 

02   E'   yield stress and modulus of elasticity of spring 

P r arbor radius 

(b)  Additional torque in spinning spring, due to extensional deforma- 

tion only (membrane): 

where M -     mass per unit length of spring 

I , ^ I us -    spin rate 

t- y -z    P:  arbor radius 

V 3.62 



(c)   Maximum bending torque in spinning spring is given by radiui 

of curvature of spring at arbor, as in static case 

7^ /£-/   (of (a) above) 

(d)   Change in bending moment in spinning   spring is determined 
/ 

by means of the- relationship: 

AM - sr ft 
whi-re 

and 

radial deformation of first coil 

coil radius   <r constant 

_  // -Li^—'   —i  

,'t 

and 
AT -' ^ AM 

In iln- ev.-nt that tht- coils "bottom-up" the iterative procedure to obtain des- 

i rlbod in this report is utilized. 
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4.   PIVOT AND JOURNAL FRICTION 

Technik has found that torque lottea associated with pivots and journals 

are attributable to a complex set of phenomena» of which the "conventional" 

definition of "friction" provides only one portion.   Thus the analysis which 

was performed, and is described herein, serves to point up the additional 

work necessary for the full understanding and description of the phenomena 

involved. 

The analysis which is presented here is the conventional "Hertaian" elas- 

tic contact deformation analysis.   For the purpose of generating quantitative 

information, this analysis is combined with a torque evaluation based on an 

assumed coefficient of friction, although the value to be assigned to such a 

coefficient is greatly dependent upon the nature of the physical interference 

phenomenon involved. 

4.1    ELASTIC ANALYSIS 

For the present, although various geometries differ (i.e., journals and 

pivots) and may require somewhat different treatment, the pivot will be ex- 

amined in order to expose certain basic problem areas.   Consider a spheri- 

cal pivot point In a spherical seat, as shown below: 

I 
I 
I 
[ 

r 

frZOttO^i 

? = .£ 
TTTTl / / /, 

4.1 

////// 
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Then from HertsUn theory, the rftdlut o( Interface plvoi-«e«t co«t*ct 

Is 

. poy i/r- /*J. *±)    -- / ^ > /& 

and the maximum interface pressure,   v   , Is given by 

J 

fmd,<4> 

I 
i 

The stresses at the points (1,2,3) shown above, may be shown to give 

rise to the maximum shear stresses (for Tresca yield criterion); 

W'^ 
3 

mi*? t. 

Note that the maximum shear stress at the center of the circ& of con- 

tact (1) is   «If»? whereas the normal stress is    <?,   ,   For the ductile ma- 

terials being considered, the maximum shear stress is a good indicator of 
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the incidence of plastic action.   This value mutt be compared to ahear 

yield ( T ) which can be taken to be -J- ;    CT * tensile yield of the ma- 

terial. 

Thus, for many hardened steels used for pivots, the stress at point (1) 

does not Indicate plastic action while the stress at (3) Is probably of a 

marginal nature in this respect.   The stress, 3^,   , at (2), however, In- 

dlcates a plastic aone below the surface of the spherical seat.   It is ques- 

tionable at this time, without further investigation, whether this aone ex- 

tends to the surface (at (3) ).   If it does not. the plastic »one will be elastlcally 

contained and should not be accompanied by large deformations. 

I!, on the other hand, the none reaches the surface to become unconfinfd, 

large deformations may accompany the action, with resulting large frlctlonal 

areas and associated torques. 

1 

i 

i 
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4,2   TORQUES IN ELASTIC CASE 

The pressure distribution between the spherical pivot and seat for the 

elastic (Hertgian)analysis, is; 

thus the torque is given by 

* Taking    M* constant 

1 r- fr. - > 
Thus for a =   2.86xl0-3 (16.4# load) 

or 

It may thus bo noted that the torque    'T , lost at the pivot is directly 

dependent upon the value ofy*  , the coefficient of friction.   A frequently 

encountered value of this coefficient Is (say)    A'. 3.   In this case 

and values of  >•   may be found, as great as, or even greater than, unity 

(seizing).   The actual limit on attainable values of  J*   is imposed by the 

shearing strength of the material. 

If, in general, the frictional force,   ^f  , at any point exceeds the 

shearing stress of the material, the material will. In fact, shear; resulting 
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in a greatly accelerated wear process.    The process will continue, always 

causing the pivot and seat to conform to each other and Increasing the contact 

radius, until the friction torce, yU? , no longer exceeds the shear strength 

at any point.   Thus, the contact radius having been increased, the frictional 

torque losses will likewise increase. 

To visualize the accelerated wear process, assume the following highly 

idealized rotating pivot-scat configuration, i.e. , conical and flat, respec- 

tively: ^ 

7r7T7T777T7777T7777777777T 

The initial pressure, a   , at the point of contact approaches Infinity, thus 

for any value of   &   ,    /** f > ^ » where   J#   is a constant, ie., that value 

of shear stress which will cause the material to shear.    As the material 

shears the cone is truncated and the scat is simultaneously "worn" so that 

a finite contact radius, a , Is attained: 

r—*<$& 

t. 

7777777777^p77777777777 
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Thui the interface pressure reduces as 0 Increase• until the value of 

I M<7 at no point exceeds   'S, \ since, if this value is exceeded, shearing will 

occur changing the pressure distribution,   <?   , increasing the contact radios 

^   , and reducing   /* f  below the    3,   value.    At this time "accelerated 

wear" is considered to cease and the more conventional wear ensues. 

Thus the question of torque losses rather than encompassing only consid- 

erations of geometry, material and "friction" linked by elastic analysis 

should be broadened.    Included in the investigation should be the additional 

analyses concerned with 

(a) plastic deformation of contacting parts - increase in contact area 

and friction losses over elastic case; 

(b) accelerated wear process - shearing of material and associated 

friction torque increase. 
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b.     BEAM HA» SPRING PROBLEMS 

An ouilltic of preliminary rcuults of two hair spring problems investigated 

by Technik will be prcaented in the following pages. 

5. I      \A i U T Ol;   .Si:T!'.A(K ON HAIR SPRING 

Statement:   Given the beam shown below,   find the maximum "g" 

lauding that »t can support.    Establish general criteria as well as specific 

resultn for the general range of dimensions presented. 

Jyiffor t 

free 

c/a*i/9*0 

Range: 

h  =   . 00330 -  . 00008 (in) 

^ =. 013 -   .001 (in) 

^'=   25 x 106 (     #     /tnZ) 

^=   .3 

/ =     * (rf/in3) 

3 ^       / ^ .45 (in) 

)3 2 

8,000*      ^      >" 25,000 (desired) 

00 x I03f   (^   ^250x 103 (#/in  ) 
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In the solution of this problem we will at first assume that there is no initial 

warping of the spring;  further work under the scope of the proposed task will 

remove this restriction. 

J 
I 
1 

I 
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Remarks:   The following analysis indicates that the limitation on 

the capacity of the hair spring to resist set back forces may be provided by its 

plastic deformation rather than its buckling configuration.    Further investigation 

must determine the more "exact" limits of the two phenomena. 

Approach;   The solution was approached by two techniques;   both of 

which assumed the existence of a buckling configuration,  and then by different 

approaches derived their basic equations.    In the first a differential equation 

approach was formulated through the use of the elastic equations for bending and 

twisting of simple beam configurations.    This resulted in three equations, two of 

which were coupled in their first-order effects.    The eigen-values of this coupled 

pair of equations,   subject to the correct boundary conditions,  provides the 

critical load.    Unfortunately because the resultant equation was highly non-linear 

its solution was considered beyond the scope of this exploratory activity. 

In the second approach an integral-equation formulation was obtained 

through the use of energy techniques.    Although exact solutions are again difficult, 

this approach lends itself to approximate solutions.    The assumption of one 

variable,   subject to all the displacement boundary conditions,  allows the complete 

integration and a reduction to an algebraic form;  from which the critical load 

can be obtained.    Although this is simpler than the differential equation 

approach,  it is quite laborious. 
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A third alternative present ■    itielf for the solution of this problem; 

that of hounding the correct solution by other« vwhich are presently known. 

Although thin (echnirjue is limited if precise values of the critical "g" loading 

.ire re(|uirud, an would be* necessitated in optimum design;  it is uf real value 

»n the »olution to the present problem.     The bounding problem» utilized were 

the uniiormly-loaded and end-loaded cantilever beam,   and the uniformly-loaded 

»imply-supported and clamped beam«. 

In addition to the ! in.italion-i imposed by the "bounding" solutions 

another limitation present s    itself,  and must be considered in all problems of 

this type;  plastic deformation ot the beam».    It is found that this often provides a 

lower limit on the "g" loading,  over and beyond tht  possibility of lateral buckling; 

unless the beam is optimum designed to avoid this type of limitation. 

The accompanying figure presents a curve of "n" (ng's) which the 

spring can v,iilntand as a function of beam length;  all other dimensions are as 

specified on the crosu-section.     From this it is seen that plastic flow is a real 

limitation in this problem,  and that the lateral buckling rigidity is more than 

adequate;  even though only a lower bound on this rigidity is calculated.    In the 

interpretation of this limit,   based on the initiation of plastic flow,  it is important 

to note that a yield stress of ZOO x 10    to 250 x 10    psi was assumed;  which may 

be beyond that which the material can develop.    In the latter event the "n" curve 

5.3 





would be suitably lowered.   An optimum design of this beam would raise the 

plastic curve with little, if any, drop of the buckling curve» subject to little 

or no weight increase; thereby substantially increasing the load carrying capa- 

city of the beam-like member.   Further work in these directions could be ex- 

pected to result in a definitive evaluation of beam hair spring design. 

1 
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».2     K» I M T Oi   A WKUCK KKTAiM.H UN HAM ^PMliy 

Statnuer.t     |it\e«U|2a(r ihr o.'tf. <» iipun ihr tjciuiing   ch«rACteritttcs 

of the «amc !>oain a* vk.i» tleti. rILMMI In Problem II,  <>( an im|>o«od curvature at 

the hxed «'nd. 

n*ckground:    tho (unction o( the >>rain i» to parform *• a «pring 

rt*i(i«ting .m .ippltcd '.ur'iuc a» lllu«tr«ted bclovk 

i 
i 
i 
i 
i 

r 
[ 
!" 

" ffju/mrtf*   f*    *ffJ"J    /trf+g* 

0ff/'*J   tor**? 

The bunding    haracterinttca o( the above spring arr influenctsd by 

.in injt!.il cur-Alurc impoBcd or> a portion of the ipnnj; during the fabrkation of 

tht- dlK>ve .ntrip.bly.     Fho extent of the deviation of these bending characleridtics 

from thoBe of the hitherto employed idealization (i.e. ,   a flat «trip) ha» been 
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questioned.    This discussion is, therefore, directed toward discerning that 

extent. 

Remarks:   The following approach indicates that the presence of the 

wedge retainer (in that it deforms the hair spring) greatly clianges the bending 

characteristics of the hair spring from those of an assumed "flat" hair spring. 

A more "exact" evaluation of these changes awaits further investigation and will 

be undertaken under the scope of the present proposed task. 

Approach: 

Phase a:   Extent of Deformation at Fixed End 

Assuming that the insertion of the brass pin and the spring 

into the steel ring causes no practical change in the curvature of the steel ring, 

then the surface   of the fuze spring in contacL with the steel ring will takt on the 

rino curvature, 

"Sieel ftn* 

r 

The maximum relative transverse deflection (sag) thus 

imposed on the spring is equal to the relative deflection between the edges of 

the spring and the center of the spring. 
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Actually this "sag", d   ,  can vary with the loler<tncei on the 

ring and on the fuze spring itself; a representative value,  however, >**• found 

to be quite large. 

Phase b:   Effect of an Assumed Distribution of the Deformation 

[ 

In the initial stages of this investigation,  it **• attauniod that 

the angle 0^ was small.    This can be shown to lead to incorrect result» and the 

analysis must be revised to account for to( being large.    This revision is reflecipd 

in the reported Phase a above, and Phase c below.    For Phase b only.  the 

original assumption of Q^ L:rr.3.ll,  will still be assumed to hold, thus providing 

a lower bound on the effects of the curvature (i.e. ,   the small o^ assumption 

yields a smaller value for the curvature than the value subsequently found). 

Under the above condition, and assuming St.   Venanl's 

principal concerning the extent of the influence of an edge disturbance,   it wa« 

theorized that a parameter describing the effect of the deformation might be the 

number of widths thru which the deformation might be equivalently atisumed to 

hold in an undiminished state. 

A number of curves are presented based on (hat investigation. 
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These curves show the deflection of the end of the spring for a load, £p (at that 

end) considering spring lengths of .3" to .45".    It was assumed that the actual 

deflection of the spring would fall somewhere between that of the spring with an 

undiminished cylindrical deformation extending one width (b) and the spring with 

an undiminished cylindrical deformation extending three widths (3b).    (Note: 

the remainder of the spring was assumed flat). 

i 

;,« 

/.i 

^ 

V 1.0 

^   .s 
--fco*' 

■ 3/ 

/^/^/^    of   3trip     (/) 

.4? 
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In vie>» of the »hortcomtngs o( the ait«umption upon which 

these curves arc based,  tht-y are presented merely for an appreciation of the 

possible magnitude of the deviation of bending characteristics of the deformed 

spring from thote of the flat spring idealization.    As was pointed out previously, 

the actual deviation would be expected to be greater than that shown,. 

Phase c:   Determination of the actual extent of the deforma- 

tion caused by an initially imposed curvature at the fixed end of the spring. 

h 

The revised maximum deflection (Phase a) was found to be 

non-trivial.        Since this deflection falls into the large deflection category (i. e. , 

o   >    h),   no conclusion can be drawn as to the local character of the deformation 

and,   for this reason,  an estimate of the actual extent of the deformation was 

undertaken. 

The spring was treated as a flat plate subjected to loading 

conditions so distributed as to bend the plate to the required configuration;  but 

to have no resultant force transverse to the plate. 

r-Jr ,--' 

\ 

ts   mm Je   Jjj*,**eYrt'c*/ 
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UuHcd on thin an Infinite lerloit expansion was found for the 

deflection of the spring in the £  direction.    The following curves show this 

(It-formation whon cither one or two terms of the scries are employed.    The 

series converges so rapidly that addition of the third term would not be warranted. 

A number of factors are evident from inspection of the curves: 

(1)   The spring retains some portion of the initially 

imposed curvature over its entire length. 

(2)   The curvature in the y direction gives rise to a 

curvature in the  X direction. 

It appears that the former assumption of a local deformation 

associated with the end effect requires much further justification.    The determin- 

ation of the bending characteristics of the spring in its presently conceived 
; 

configuration (as shown in the curves using first and second terms of the series) 

is complex.   The procedure would hold only if the yield stress of the spring were 

not exceeded.    The local relaxation resulting from such excessive stresses, would 

result in an attenuation of the cylindrical end effect,  i.e. , the spring would act 

more like a flat plate or beam. 

5. U 
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6.     TORSION HAIR SPRING 

Torsion hair ■prlngt are often subject to the tame phenomena aitocl- 

ated with rotating ihafts. i.e. , resonance at critical epeede.   Thii reaon- 

ance coneiete of the coincidence of the spin rate of the projectile (and there- 

fore, of the hair spring) with one of the modes of transverse bending vibration 

of the hsfcr spring.   Thus the values of those spin rates which correspond to 

critical speeds of the torsion hair spring, are dependent upon the properties 

and configuration of that hair spring. 

The ultimate purpose of the hair spring, which is concerned with its 

time keeping characteristics, is to oscillate In its torsional mode.   For this 

reason, the design of the spring is based upon the objective of obtaining a 

specific natural frequency of the spring acting in concert with a rotary inertia. 

The attainment of this natural frequency is dependent upon the same properties 

and configuration considerations as are the values of the critical speed spin 

rates. 

This, one finds an interrelationship which exists between the primary, 

time keeping, characteristic of the torsion hair spring and the secondary, 

critical speed, characteristic which constitutes possible degradation of the 

functioning capability of the time keeping system. 

In order to illustrate this relationship, the following specific case will 

be investigated. 
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6.1   TORSIONAL FREQUENCY ( f ) 

The balance oscillatei in a torsional vibration   about the centerllne, 

superposed on the overall projectile spin,  \Ot ,   The frequency,  f   , of this 

oscillation can be shown to be given by: 

ZfT' 

for a steel wire (modulus of elasticity,   £-  ' 30x10^ psi and Polsson's ratio, 

JJ* ,3), where 

f- natural frequency in torsional mode (cpt) 

c/= spring diameter, circular section (in) 

M* concentrated mass   **  1/2 total balance masa 

^r effective diameter between masses» Mi. (i*) 

I - effective length of hair spring   O"? 
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6.2   -WHIRL   FREQUENCY (X2«../ ) 

Likewise, It cen be shown thst (or the tpeclml cate where the rotary 

Inertia o( the end I« comtrelned eo that the shaft can be considered fixed« 

fixed, the critical speed. Sl>4r,t , Is given by 

lot stvel again, where 

(/   -' <v   ^i, " ' w discrete constants, the value of which depends on 
the mode shape (of the bending vibration). 

«.     '   22.0 

cf%    .   61.7 

a, <   121.0 
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APPENDIX A;   C JRVED BEAM ENERGY EXPRESSIONS 

For a curved beam, as shown below, it can be shown that for a non- 

extensional bending deformation ^/\ .   t / 

A. 1 



""      ^f 1 

Combining these two equations, one finds 

For small bending deformations of a full coil   ^f.- U , this can be linearlaed 

as: 

Thus the strain energy of the full coil is given by 

U^ff;    jV^ 

[/--ner j-' 

The work done by centrifugal forces in moving the coil element through 

the displacement«   U   , is given by 

W'- yjj'lc^rJt^) ^r]J 

d  (for<e) 

I which for a full coil becomes, " rv-       L . 

i 
Again, for small deformations,   Li   , this can be linearized as: 

c 

A. 2 
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APHKNÜIX f.;   i Ü<S1  ITKUATION KOR SrCTION_>» »» >.I. >» I 

■/.:) 

r 
i *. 1  '•' 1   *'•' e:-i Lev///; 1  ^   tfJ !     4 

< 
^ 

.12$ 1 - - - 1 i                      * -4.65 -.142 

. .so \.l 1.44 1.728 ..44 .76 -8.04 -  7.28 -.222 

. 17b 1.4 1.98 2.74 .98 2.68 -12.7 -10. -.306 

.200 1.6 2.56 4.09 1.56 6.37 -19.0 -12.36 -.378 

.225 1.8 3.24 5.82 2.24 13. -27.1 -14.1 -.431 

.250 2.0 4.00 8.0 3.00 24. -17.2 -13.2 -.404 

.275 2.2 4.84 10.6 3.84 40.80 -49.3 -8.5 -.260 

. iÜO 2.4 5.78 13.9 4.78 66.50 -64.6 1.9 .058 

.325 2.6 6.78 17.6 5.78 101.80 -81.9 19.9 .61 

.350 2.8 7.82 21.9 6.82 149.00 -102. 47. 1.44 

2? 86.38 
J 

404.91 O *•* 

t« 

*— 4« 
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